DYNAMICAL BEHAVIOR OF WATER- AND GAS-SATURATED
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S. Z. Dunin and V. L, Mezl'nikov UDC 539.3

Porous bodies having a fairly rigid skeleton are of particular interest for research since they are en-
countered rather frequently in practical problems such as soil mechanics. From a study of the behavior of
such media certain conclusions can be drawn about the properties of corresponding solid bedies, and the cold
compression curve of a solid material in the negative pressure region can be obtained {(cf. [1] where a model
is proposed which gives a good description of the behavior of porous bodies under shock compression by shock
waves with intensities of the order of several megabars), This model does not describe the results of shock
compression of porous bodies by shock waves with intensities of the order of kilobars., In addition, it would
be desirable to derive the equation of state of a porous medium in order to describe other processes, such as
unloading waves. Herrmann [2] proposed a p—a model in which the equation of state is written as two equa-
tions, one of which has the usual form of an equation of state, but contains the porosity parameter o, and the
other relates the pressure and porosity. This relation was obtained empirieally in [2], Carroll and Holt {3, 4]
calculated the dependence of the porosity on pressure theoretically, taking account of the dynamics of pore
collapse. 1In these papers the presence of gas or liquid in the pores was neglected, although the interstitial
pressure can play a very important role in considering unloading, and can lead to an effective expansion of
the pores after the passage of a shock wave, Inthe present article we consider the effect of interstitial pres~
sure on the change of porosity.

We treat a porous body as a homogeneous isotropic medium characterized, in contrast with solid bodies,
by an additional parameter — the porosity @, which we define as a=V/Vg, where V and Vg are respectively the
specific volumes of the porous and solid material under identical conditions.

It is required to derive an equation relating the porosity and the components of the stress tensor aver-
aged over a sufficiently large volume, since the actual stresses vary substantially over distances of the order
of the distance between pores. To derive this equation we select a cell around a single pore so that the porosity
of the cell is the same as that of the body. The shape of the cell is chosen so that the stress tensor is constant
on its boundary. Such a cell can always be chosen if the characteristic length of variation of the average stress
is much greater than the size of a pore.

A relation must be specified between the state of stress in a cell and the average stress tensor in the
porous body, Let <‘T>ij bea component of the average stress tensor, i.e.
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Various models of the state of stress in a cell can be constructed, assuming, e.g., that
635 = 05l 2)
where s is the surface of the cell. If there is no gas inthe internal pores the Carroll model {3] is obtained,

It would be more consistent in (1) to change from the average over the volume of the body to the average
over the equivalent cell:
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where V, is the volume of a cell, Using the identity
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and the equation of motion of the material

dvi 6Gik
b= Tz,
we obtain finally instead of Eq. (2)
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where vi is a velocity component, p is the density of the solid medium, and d/dt=8/6t +v-V is the Lagrangian
derivative.

Equation (3) gives a relation between the average values of the stresses in a solid body and the character-
istics of the process of pore collapse, since by integrating the equation of motion v can be found in terms of
the porosity and its derivatives.

Calculations show that under pressures much smaller than the elastic constants of the solid material
(tens of kilobars) the main compression occurs as a result of pore collapse, and consequently the solid mate~
rial can be assumed incompressible, and the pressure of the material in a pore can be calculated in the adiabatic
approximation,

We assume that in the range of pressures considered a solid material is an incompressible elastoplastic
medium which satisfies the Mises condition in the plastic phase.

If the width of the loading wave front is much greater than the distance between pores, the behavior of a
porous body can be described by considering a single cell in the field of a uniform wave varying only with time
whose amplitude p ) determines the components of the average stress tensor (o) ij="p (t)éij. The equivalent
cell in this case, i.e., for hydrostatic compression, is a hollow sphere with an outside radius b and an inside
radius @ such that ¢ is the average size of a pore, and hence b%/ (b3-a3) =a is the porosity. The pressure in a
pore is q (), and 0y | =0= —q(ao)éij. As will be shown later, the main compression occurs for complete plas-
ticity of the whole cell, and consequently the initial stress distribution is unimportant. The process is de-
scribed by the equation
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The yield condition is lUr-U(pl =Y; the boundary conditions are orlr -~ ") and Opl ppy =0l g; the
latter is calculated from Egs. (2) or (3); from (2) "rlr=b= ~p(). By using (3) we have

b
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Integrating the equation of motion we obtain
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Using the incompressibility condition we calculate the mass velocity v=c'xa3/ :?.(ozo—l)r2 and Q{o, @, o). By using
)
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and by using (3) we have
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where o and & are time derivatives,

The interstitial pressure q @) can be found in the adiabatic approxiination



9o (q; : i)v for gas,

% {(’15: — i))* '1} for wates,

g ()=
l

The expression for peq(a) as a function of the state of the material has the form
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In the range (2Goy +Y)/(2G +Y) =y < @<, the material behaves elastically; for (2Gag)/ (2G +Y)=a,<a<aqy
the material is partially plastic (a plastic front is propagated from a pore); and for 1<a<a, the material be-
haves like a plastic.

We note that the change of porosity is small in the first two phases of compression ¢he elastic andelasto-
plastic phases):

{otg — a)/ag = Y/(2G + V) <« 1.

Considering unloading with a=«_, i.e., expansion of a pore (we assume that complete plasticity was reached
in compression) we obtain an equation analogous to Eq. (4):

?YQ&, @, @) = p(t) + peale) — o(@),
where T, Q, and g are the same as before, and the function Peq is found from
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with the process passing through the same three phases as in bompression. Just as in the expansion of pores
the change in porosity is small in the first two phases:

{0y — a)o. =Y/(G —-Y)< 1,
so the change of porosity can be neglected in the first two phases, and we can investigate the equation

TYQ(o, & @) =p(H)—g(@) = & VIn Ly, (6)

where the minus sign is for pore collapse and the plus sign for expansion,

Equation (6) with Q given by (5) was integrated numerically using values characteristic for porous alu-
minum: p=2,7 g/em?® Y=3kbar. The initial porosity was taken as o;=1.4 and the pore size as ¢=0.2 mm,
The interstitial pressure was specified in the form of a gas adiabat with an exponent y=1.4,

Calculations were performed for various initial interstitial pressures and various amplitudes and dura-
tions of a rectangular pressure pulse (the pulse amplitude and duration were chosen so that pAt=YT),

Figure 1 and Table 1 show the time variation of porosity for various pressure pulses with an initial inter-

stitial pressure g,=3.33°107* Y. Figure 2 and Table 2 show similar results for an initial interstitial pressure
qp=3.33-10"% 7Y,
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TABLE 1 . TABLE 2
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Figures 1 and 2 show that the presence of gas in the pores can lead to a dependence of the final porosity
on the pulse amplitude and duration which is far from monotonic. Thus, as the pulse amplitude is increased
the inertia of the process of change of porosity begins to manifest itself: In the loading phase a pore passes
through the equilibrium position corresponding to the given pulse and achieves an intense backward motion.
The limiting porosity a , at which backward motion begins can be found from the equation
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and for q,=3.33" 107 v is equal to 1.017.

The nonmonotonic nature of the final porosity considered above with the passage of an intense loading
wave can lead to a nonmonotonic dependence of the porosity of soil close to the source of a shock wave on the
distance from the source. The porosity close to and far from a source can be larger than in an intermediate
region, but quantitative data can be obtained only for a specific calculation of such a problem,
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